Quelques exercices de rappels pour se remettre en selle

Un chapitre consacré à divers exercices pour réviser les principes de base de la syntaxe Python et des objets utilisés par le langage.

Auteur·rice

Lino Galiana

Date de publication

2025-08-13

Pandas et Numpy, les premiers packages de notre parcours initiatique, sont essentiels pour manipuler les données. Néanmoins, il est nécessaire de ne pas faire l’impasse sur les fondements du langage Python lorsqu’on découvre ce langage. Une bonne compréhension des éléments structurants du langage permet de mieux comprendre la logique des packages de data science, de mieux comprendre les erreurs rencontrées et entraîne une plus grande productivité et liberté.

Pour découvrir les objets de base et la structure du langage, une série de notebooks est mise à disposition ci-dessous. Le parcours est à la carte, vous pouvez faire ces notebooks dans le désordre ou n’en faire qu’une partie si vous avez de bons souvenirs sur le contenu couvert par certains.

Après avoir révisé, la suite du parcours se trouve dans la partie “Manipuler les données”

Notebooks de révision

Informations additionnelles

Ce site a été construit automatiquement par le biais d’une action Github utilisant le logiciel de publication reproductible Quarto (version 1.7.33).

L’environnement utilisé pour obtenir les résultats est reproductible par le biais d’uv. Le fichier pyproject.toml utilisé pour construire cet environnement est disponible sur le dépôt linogaliana/python-datascientist

pyproject.toml
[project]
name = "python-datascientist"
version = "0.1.0"
description = "Source code for Lino Galiana's Python for data science course"
readme = "README.md"
requires-python = ">=3.12,<3.13"
dependencies = [
    "altair==5.4.1",
    "black==24.8.0",
    "cartiflette",
    "contextily==1.6.2",
    "duckdb>=0.10.1",
    "folium>=0.19.6",
    "geoplot==0.5.1",
    "graphviz==0.20.3",
    "great-tables==0.12.0",
    "ipykernel>=6.29.5",
    "jupyter>=1.1.1",
    "jupyter-cache==1.0.0",
    "kaleido==0.2.1",
    "langchain-community==0.3.9",
    "loguru==0.7.3",
    "markdown>=3.8",
    "nbclient==0.10.0",
    "nbformat==5.10.4",
    "nltk>=3.9.1",
    "pip>=25.1.1",
    "plotly>=6.1.2",
    "plotnine==0.13.6",
    "polars==1.8.2",
    "pyarrow==17.0.0",
    "pynsee==0.1.8",
    "python-dotenv==1.0.1",
    "pywaffle==1.1.1",
    "requests>=2.32.3",
    "scikit-image==0.24.0",
    "scipy==1.13.0",
    "spacy==3.8.4",
    "webdriver-manager==4.0.2",
    "wordcloud==1.9.3",
    "xlrd==2.0.1",
    "yellowbrick==1.5",
]

[tool.uv.sources]
cartiflette = { git = "https://github.com/inseefrlab/cartiflette" }

Pour utiliser exactement le même environnement (version de Python et packages), se reporter à la documentation d’uv.

SHA Date Author Description
91431fa2 2025-06-09 17:08:00 Lino Galiana Improve homepage hero banner (#612)
dac49604 2024-08-29 15:07:49 linogaliana Change URL on edit on github button
f8b04136 2024-08-28 15:15:04 Lino Galiana Révision complète de la partie introductive (#549)
Retour au sommet

Citation

BibTeX
@book{galiana2023,
  author = {Galiana, Lino},
  title = {Python pour la data science},
  date = {2023},
  url = {https://pythonds.linogaliana.fr/},
  doi = {10.5281/zenodo.8229676},
  langid = {fr}
}
Veuillez citer ce travail comme suit :
Galiana, Lino. 2023. Python pour la data science. https://doi.org/10.5281/zenodo.8229676.