Evaluer la qualité d’un modèle

Faire preuve de méthode pour évaluer la qualité d’un modèle permet de proposer des prédictions plus robustes, ayant de meilleures performances sur un nouveau jeu de données (prédictions out-of-sample). Décomposer l’échantillon initial en sous-échantillons d’entraînement et de tests, faire de la validation croisée, utiliser les bonnes mesures de performances peut se faire, grâce à scikit, de manière relativement standardisée. Cette démarche scientifique est essentielle pour assurer la confiance dans la qualité d’un modèle, ce qu’a illustré récemment un cycle de séminaire de Princeton.

Modélisation
Exercice
Author

Lino Galiana

Published

2024-04-27

Nous allons ici voir des méthodes générales permettant de s’assurer que le modèle de Machine Learning mobilisé est de qualité. Ce chapitre ne présente pas d’exercice ou de code, il est là pour présenter certains concepts que nous appliquerons dans les prochains chapitres.

1 Découper l’échantillon

Le chapitre précédent présentait le pipeline simple ci-dessous pour introduire à la notion d’entraînement d’un modèle :

Ce pipeline fait abstraction d’hypothèses exogènes à l’estimation mais qui sont à faire sur des paramètres car elles affectent la performance de la prédiction. Par exemple, de nombreux modèles proposent une pénalisation des modèles non parcimonieux pour éviter le sur-apprentissage. Le choix de la pénalisation idéale dépend de la structure des données et n’est jamais connue, ex-ante par le modélisateur. Faut-il pénaliser fortement ou non le modèle ? En l’absence d’argument théorique, on aura tendance à tester plusieurs paramètres de pénalisation et choisir celui qui permet la meilleure prédiction.

La notion de validation croisée permettra de généraliser cette approche. Ces paramètres qui affectent la prédiction seront pas la suite appelés des hyperparamètres. Comme nous allons le voir, nous allons aboutir à un raffinement de l’approche pour obtenir un pipeline ayant plutôt cet aspect :

2 Le problème du sur-apprentissage

Le but du Machine Learning est de calibrer l’algorithme sur des exemples connus (données labellisées) afin de généraliser à des exemples nouveaux (éventuellement non labellisés). On vise donc de bonnes qualités prédictives et non un ajustement parfait aux données historiques.

Il existe un arbitrage biais-variance dans la qualité d’estimation1. Soit \(h(X,\theta)\) un modèle statistique. On peut décomposer l’erreur d’estimation en deux parties :

\[ \mathbb{E}\bigg[(y - h(\theta,X))^2 \bigg] = \underbrace{ \bigg( y - \mathbb{E}(h_\theta(X)) \bigg)^2}_{\text{biais}^2} + \underbrace{\mathbb{V}\big(h(\theta,X)\big)}_{\text{variance}} \]

Il y a ainsi un compromis à faire entre biais et variance. Un modèle peu parcimonieux, c’est-à-dire proposant un grand nombre de paramètres, va, en général, avoir un faible biais mais une grande variance. En effet, le modèle va tendre à se souvenir d’une combinaison de paramètres à partir d’un grand nombre d’exemples sans être capable d’apprendre la règle qui permette de structurer les données.

Par exemple, la ligne verte ci-dessous est trop dépendante des données et risque de produire une erreur plus importante que la ligne noire (qui moyennise plus) sur de nouvelles données.

Pour renforcer la validité externe d’un modèle, il est ainsi commun, en Machine Learning :

  1. d’estimer un modèle sur un jeu de données (jeu d’apprentissage ou training set) mais d’évaluer la performance, et donc la pertinence du modèle, sur d’autres données, qui n’ont pas été mobilisées lors de la phase d’estimation (jeu de validation, de test ou testing set) ;
  2. d’avoir des mesures de performances qui pénalisent fortement les modèles peu parcimonieux (BIC) ou conduire une première phase de sélection de variable (par des méthodes de LASSO…)

Pour décomposer un modèle en jeu d’estimation et de test, la meilleure méthode est d’utiliser les fonctionnalités de scikit de la manière suivante :

from sklearn.model_selection import train_test_split

xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size=0.2, random_state=0)

La proportion d’observations dans le jeu de test est contrôlée par l’argument test_size. La proportion optimale n’existe pas. La règle du pouce habituelle est d’assigner aléatoirement 20 % des observations dans l’échantillon de test pour garder suffisamment d’observations dans l’échantillon d’estimation.

L’exercice sur les SVM illustre cette construction et la manière dont elle facilite l’évaluation de la qualité d’un modèle.

3 Validation croisée

Certains algorithmes font intervenir des hyperparamètres, c’est-à-dire des paramètres exogènes qui déterminent la prédiction mais ne sont pas estimés. La validation croisée est une méthode permettant de choisir la valeur du paramètre qui optimise la qualité de la prédiction en agrégeant des scores de performance sur des découpages différents de l’échantillon d’apprentissage.

La validation croisée permet d’évaluer les performances de modèles différents (SVM, random forest, etc.) ou, couplé à une stratégie de grid search, de trouver les valeurs des hyperparamètres qui aboutissent à la meilleure prédiction.

La méthode la plus commune est la validation croisée k-fold. On partitionne les données en \(K\) morceaux et on considère chaque pli, tour à tour, comme un échantillon de test en apprenant sur les \(K-1\) échantillons restants. Les \(K\) indicateurs ainsi calculés sur les \(K\) échantillons de test peuvent être moyennés et comparés pour plusieurs valeurs des hyperparamètres.

Il existe d’autres types de validation croisée, notamment la leave one out qui consiste à considérer une fois exactement chaque observation comme l’échantillon de test (une n-fold cross validation).

4 Mesurer la performance

Jusqu’à présent, nous avons passé sous silence la question du support de \(y\), c’est-à-dire de l’étendue des valeurs de notre variable d’intérêt. En pratique, la distribution des \(y\) va néanmoins déterminer deux questions cruciales : la méthode et l’indicateur de performance.

En apprentissage supervisé, on distingue en général les problèmes de:

  • Classification : la variable \(y\) est discrète
  • Régression : la variable \(y\) est continue

Les deux approches ne sont pas sans lien. On peut par exemple voir le modèle économétrique de choix d’offre de travail comme un problème de classification (participation ou non au marché du travail) ou de régression (régression sur un modèle à variable latente)

4.1 Classification

La plupart des critères de performance sont construits à partir de la matrice de confusion :

Image empruntée à https://www.lebigdata.fr/confusion-matrix-definition

Image empruntée à https://www.lebigdata.fr/confusion-matrix-definition

A partir des 4 coins de cette matrice, il existe plusieurs mesure de performance

Critère Mesure Calcul
Accuracy Taux de classification correcte Diagonale du tableau : \(\frac{TP+TN}{TP+FP+FN+FP}\)
Precision Taux de vrais positifs Ligne des prédictions positives : \(\frac{TP}{TP+FP}\)
Recall (rappel) Capacité à identifier les labels positifs Colonne des prédictions positives : \(\frac{TP}{TP+FN}\)
F1 Score Mesure synthétique (moyenne harmonique) de la précision et du rappel \(2 \frac{precision \times recall}{precision + recall}\)

En présence de classes désequilibrées, la F-mesure est plus pertinente pour évaluer les performances mais l’apprentissage restera mauvais si l’algorithme est sensible à ce problème. Notamment, si on désire avoir une performance équivalente sur les classes minoritaires, il faut généralement les sur-pondérer (ou faire un échantillonnage stratifié) lors de la constitution de l’échantillon d’observation.

Il est possible de construire des modèles à partir des probabilités prédites d’appartenir à la classe d’intérêt. Pour cela, on fixe un seuil \(c\) tel que

\[ \mathbb{P}(y_i=1|X_i) > c \Rightarrow \widehat{y}_i = 1 \]

Plus on augmente \(c\), plus on est sélectif sur le critère d’appartenance à la classe. La précision, i.e. le taux de vrais positifs parmi les prédictions positives, augmente. Mais on augmente le nombre de positifs manqués (autrement dit on diminue le rappel). Pour chaque valeur de \(c\) correspond une matrice de confusion et donc des mesures de performances. La courbe ROC est un outil classique pour représenter en un graphique l’ensemble de ces informations en faisant varier \(c\) de 0 à 1:

L’aire sous la courbe (AUC) permet d’évaluer quantitativement le meilleur modèle au sens de ce critère. L’AUC représente la probabilité que le modèle soit capable de distinguer entre la classe positive et négative.

4.2 Régression

En Machine Learning, les indicateurs de performance en régression sont les suivants :

Nom Formule
Mean squared error \(MSE = \mathbb{E}\left[(y - h_\theta(X))^2\right]\)
Root Mean squared error \(RMSE = \sqrt{\mathbb{E}\left[(y - h_\theta(X))^2\right]}\)
Mean Absolute Error \(MAE = \mathbb{E} \bigg[ \lvert y - h_\theta(X) \rvert \bigg]\)
Mean Absolute Percentage Error \(MAE = \mathbb{E}\left[ \left\lvert \frac{y - h_\theta(X)}{y} \right\rvert \right]\)

L’économètre se focalise moins sur la qualité de la prédiction et utilisera d’autres critères pour évaluer la qualité d’un modèle (certains, comme le BIC, sont à regarder aussi dans une optique Machine Learning) : \(R^2\), \(BIC\), \(AIC\), log-likelihood, etc.

Informations additionnelles

environment files have been tested on.

Latest built version: 2024-04-27

Python version used:

'3.11.6 | packaged by conda-forge | (main, Oct  3 2023, 10:40:35) [GCC 12.3.0]'
Package Version
affine 2.4.0
aiobotocore 2.12.2
aiohttp 3.9.3
aioitertools 0.11.0
aiosignal 1.3.1
alembic 1.13.1
aniso8601 9.0.1
annotated-types 0.6.0
appdirs 1.4.4
archspec 0.2.3
astroid 3.1.0
asttokens 2.4.1
attrs 23.2.0
Babel 2.14.0
bcrypt 4.1.2
beautifulsoup4 4.12.3
black 24.4.2
blinker 1.7.0
blis 0.7.11
bokeh 3.4.0
boltons 23.1.1
boto3 1.34.51
botocore 1.34.51
branca 0.7.1
Brotli 1.1.0
cachetools 5.3.3
cartiflette 0.0.2
Cartopy 0.23.0
catalogue 2.0.10
cattrs 23.2.3
certifi 2024.2.2
cffi 1.16.0
charset-normalizer 3.3.2
chromedriver-autoinstaller 0.6.4
click 8.1.7
click-plugins 1.1.1
cligj 0.7.2
cloudpathlib 0.16.0
cloudpickle 3.0.0
colorama 0.4.6
comm 0.2.2
commonmark 0.9.1
conda 24.3.0
conda-libmamba-solver 24.1.0
conda-package-handling 2.2.0
conda_package_streaming 0.9.0
confection 0.1.4
contextily 1.6.0
contourpy 1.2.1
cryptography 42.0.5
cycler 0.12.1
cymem 2.0.8
cytoolz 0.12.3
dask 2024.4.1
dask-expr 1.0.10
debugpy 1.8.1
decorator 5.1.1
dill 0.3.8
distributed 2024.4.1
distro 1.9.0
docker 7.0.0
duckdb 0.10.1
en-core-web-sm 3.7.1
entrypoints 0.4
et-xmlfile 1.1.0
exceptiongroup 1.2.0
executing 2.0.1
fastjsonschema 2.19.1
fiona 1.9.6
flake8 7.0.0
Flask 3.0.2
folium 0.16.0
fontawesomefree 6.5.1
fonttools 4.51.0
frozenlist 1.4.1
fsspec 2023.12.2
GDAL 3.8.4
gensim 4.3.2
geographiclib 2.0
geopandas 0.12.2
geoplot 0.5.1
geopy 2.4.1
gitdb 4.0.11
GitPython 3.1.43
google-auth 2.29.0
graphene 3.3
graphql-core 3.2.3
graphql-relay 3.2.0
graphviz 0.20.3
great-tables 0.5.0
greenlet 3.0.3
gunicorn 21.2.0
h11 0.14.0
htmltools 0.5.1
hvac 2.1.0
idna 3.6
imageio 2.34.1
importlib_metadata 7.1.0
importlib_resources 6.4.0
inflate64 1.0.0
ipykernel 6.29.3
ipython 8.22.2
ipywidgets 8.1.2
isort 5.13.2
itsdangerous 2.1.2
jedi 0.19.1
Jinja2 3.1.3
jmespath 1.0.1
joblib 1.3.2
jsonpatch 1.33
jsonpointer 2.4
jsonschema 4.21.1
jsonschema-specifications 2023.12.1
jupyter-cache 1.0.0
jupyter_client 8.6.1
jupyter_core 5.7.2
jupyterlab_widgets 3.0.10
kaleido 0.2.1
kiwisolver 1.4.5
kubernetes 29.0.0
langcodes 3.4.0
language_data 1.2.0
lazy_loader 0.4
libmambapy 1.5.7
llvmlite 0.42.0
locket 1.0.0
lxml 5.2.1
lz4 4.3.3
Mako 1.3.2
mamba 1.5.7
mapclassify 2.6.1
marisa-trie 1.1.0
Markdown 3.6
MarkupSafe 2.1.5
matplotlib 3.8.3
matplotlib-inline 0.1.6
mccabe 0.7.0
menuinst 2.0.2
mercantile 1.2.1
mizani 0.11.2
mlflow 2.11.3
mlflow-skinny 2.11.3
msgpack 1.0.7
multidict 6.0.5
multivolumefile 0.2.3
munkres 1.1.4
murmurhash 1.0.10
mypy 1.9.0
mypy-extensions 1.0.0
nbclient 0.10.0
nbformat 5.10.4
nest_asyncio 1.6.0
networkx 3.3
nltk 3.8.1
numba 0.59.1
numpy 1.26.4
oauthlib 3.2.2
opencv-python-headless 4.9.0.80
openpyxl 3.1.2
outcome 1.3.0.post0
OWSLib 0.28.1
packaging 23.2
pandas 2.2.1
paramiko 3.4.0
parso 0.8.4
partd 1.4.1
pathspec 0.12.1
patsy 0.5.6
Pebble 5.0.7
pexpect 4.9.0
pickleshare 0.7.5
pillow 10.3.0
pip 24.0
pkgutil_resolve_name 1.3.10
platformdirs 4.2.0
plotly 5.19.0
plotnine 0.13.5
pluggy 1.4.0
polars 0.20.18
preshed 3.0.9
prometheus_client 0.20.0
prometheus-flask-exporter 0.23.0
prompt-toolkit 3.0.42
protobuf 4.25.3
psutil 5.9.8
ptyprocess 0.7.0
pure-eval 0.2.2
py7zr 0.20.8
pyarrow 15.0.0
pyarrow-hotfix 0.6
pyasn1 0.5.1
pyasn1-modules 0.3.0
pybcj 1.0.2
pycodestyle 2.11.1
pycosat 0.6.6
pycparser 2.21
pycryptodomex 3.20.0
pydantic 2.7.1
pydantic_core 2.18.2
pyflakes 3.2.0
Pygments 2.17.2
PyJWT 2.8.0
pylint 3.1.0
PyNaCl 1.5.0
pynsee 0.1.7
pyOpenSSL 24.0.0
pyparsing 3.1.2
pyppmd 1.1.0
pyproj 3.6.1
pyshp 2.3.1
PySocks 1.7.1
python-dateutil 2.9.0
python-dotenv 1.0.1
python-magic 0.4.27
pytz 2024.1
pyu2f 0.1.5
pywaffle 1.1.0
PyYAML 6.0.1
pyzmq 25.1.2
pyzstd 0.15.10
QtPy 2.4.1
querystring-parser 1.2.4
rasterio 1.3.10
referencing 0.34.0
regex 2023.12.25
requests 2.31.0
requests-cache 1.2.0
requests-oauthlib 2.0.0
rpds-py 0.18.0
rsa 4.9
Rtree 1.2.0
ruamel.yaml 0.18.6
ruamel.yaml.clib 0.2.8
s3fs 2023.12.2
s3transfer 0.10.1
scikit-image 0.23.2
scikit-learn 1.4.1.post1
scipy 1.13.0
seaborn 0.13.2
selenium 4.20.0
setuptools 69.2.0
shapely 2.0.3
six 1.16.0
smart-open 6.4.0
smmap 5.0.0
sniffio 1.3.1
snuggs 1.4.7
sortedcontainers 2.4.0
soupsieve 2.5
spacy 3.7.4
spacy-legacy 3.0.12
spacy-loggers 1.0.5
SQLAlchemy 2.0.29
sqlparse 0.4.4
srsly 2.4.8
stack-data 0.6.2
statsmodels 0.14.1
tabulate 0.9.0
tblib 3.0.0
tenacity 8.2.3
texttable 1.7.0
thinc 8.2.3
threadpoolctl 3.4.0
tifffile 2024.4.24
tomli 2.0.1
tomlkit 0.12.4
toolz 0.12.1
topojson 1.8
tornado 6.4
tqdm 4.66.2
traitlets 5.14.2
trio 0.25.0
trio-websocket 0.11.1
truststore 0.8.0
typer 0.9.4
typing_extensions 4.11.0
tzdata 2024.1
Unidecode 1.3.8
url-normalize 1.4.3
urllib3 1.26.18
wasabi 1.1.2
wcwidth 0.2.13
weasel 0.3.4
webcolors 1.13
webdriver-manager 4.0.1
websocket-client 1.7.0
Werkzeug 3.0.2
wheel 0.43.0
widgetsnbextension 4.0.10
wordcloud 1.9.3
wrapt 1.16.0
wsproto 1.2.0
xgboost 2.0.3
xlrd 2.0.1
xyzservices 2024.4.0
yarl 1.9.4
yellowbrick 1.5
zict 3.0.0
zipp 3.17.0
zstandard 0.22.0

View file history

SHA Date Author Description
06d003a 2024-04-23 10:09:22 Lino Galiana Continue la restructuration des sous-parties (#492)
005d89b 2023-12-20 17:23:04 Lino Galiana Finalise l’affichage des statistiques Git (#478)
3fba612 2023-12-17 18:16:42 Lino Galiana Remove some badges from python (#476)
1684220 2023-12-02 12:06:40 Antoine Palazzolo Première partie de relecture de fin du cours (#467)
1f23de2 2023-12-01 17:25:36 Lino Galiana Stockage des images sur S3 (#466)
a06a268 2023-11-23 18:23:28 Antoine Palazzolo 2ème relectures chapitres ML (#457)
b68369d 2023-11-18 18:21:13 Lino Galiana Reprise du chapitre sur la classification (#455)
fd3c955 2023-11-18 14:22:38 Lino Galiana Formattage des chapitres scikit (#453)
889a71b 2023-11-10 11:40:51 Antoine Palazzolo Modification TP 3 (#443)
a771183 2023-10-09 11:27:45 Antoine Palazzolo Relecture TD2 par Antoine (#418)
9a4e226 2023-08-28 17:11:52 Lino Galiana Action to check URL still exist (#399)
a8f90c2 2023-08-28 09:26:12 Lino Galiana Update featured paths (#396)
3bdf3b0 2023-08-25 11:23:02 Lino Galiana Simplification de la structure 🤓 (#393)
78ea2cb 2023-07-20 20:27:31 Lino Galiana Change titles levels (#381)
29ff3f5 2023-07-07 14:17:53 linogaliana description everywhere
f21a24d 2023-07-02 10:58:15 Lino Galiana Pipeline Quarto & Pages 🚀 (#365)
f5f0f9c 2022-11-02 19:19:07 Lino Galiana Relecture début partie modélisation KA (#318)
f10815b 2022-08-25 16:00:03 Lino Galiana Notebooks should now look more beautiful (#260)
494a85a 2022-08-05 14:49:56 Lino Galiana Images featured ✨ (#252)
d201e3c 2022-08-03 15:50:34 Lino Galiana Pimp la homepage ✨ (#249)
6264438 2022-06-29 14:53:05 Lino Galiana Retire typo math (#243)
12965ba 2022-05-25 15:53:27 Lino Galiana :launch: Bascule vers quarto (#226)
9c71d6e 2022-03-08 10:34:26 Lino Galiana Plus d’éléments sur S3 (#218)
c3bf4d4 2021-12-06 19:43:26 Lino Galiana Finalise debug partie ML (#190)
fb14d40 2021-12-06 17:00:52 Lino Galiana Modifie l’import du script (#187)
37ecfa3 2021-12-06 14:48:05 Lino Galiana Essaye nom différent (#186)
2c8fd0d 2021-12-06 13:06:36 Lino Galiana Problème d’exécution du script import data ML (#185)
5d0a5e3 2021-12-04 07:41:43 Lino Galiana MAJ URL script recup data (#184)
5c10490 2021-12-03 17:44:08 Lino Galiana Relec @antuki partie modelisation (#183)
2a8809f 2021-10-27 12:05:34 Lino Galiana Simplification des hooks pour gagner en flexibilité et clarté (#166)
2e4d586 2021-09-02 12:03:39 Lino Galiana Simplify badges generation (#130)
80877d2 2021-06-28 11:34:24 Lino Galiana Ajout d’un exercice de NLP à partir openfood database (#98)
4cdb759 2021-05-12 10:37:23 Lino Galiana :sparkles: :star2: Nouveau thème hugo :snake: :fire: (#105)
7f9f97b 2021-04-30 21:44:04 Lino Galiana 🐳 + 🐍 New workflow (docker 🐳) and new dataset for modelization (2020 🇺🇸 elections) (#99)
671f75a 2020-10-21 15:15:24 Lino Galiana Introduction au Machine Learning (#72)
Back to top

Footnotes

  1. Cette formule permet de bien comprendre la théorie statistique asymptotique, notamment le théorème de Cramer-Rao. Dans la classe des estimateurs sans biais, c’est-à-dire dont le premier terme est nul, trouver l’estimateur à variance minimale revient à trouver l’estimateur qui minimise \(\mathbb{E}\bigg[(y - h_\theta(X))^2 \bigg]\). C’est la définition même de la régression, ce qui, quand on fait des hypothèses supplémentaires sur le modèle statistique, explique le théorème de Cramer-Rao.↩︎

Citation

BibTeX citation:
@book{galiana2023,
  author = {Galiana, Lino},
  title = {Python Pour La Data Science},
  date = {2023},
  url = {https://pythonds.linogaliana.fr/},
  doi = {10.5281/zenodo.8229676},
  langid = {en}
}
For attribution, please cite this work as:
Galiana, Lino. 2023. Python Pour La Data Science. https://doi.org/10.5281/zenodo.8229676.